Berechnung von Kältemittelführenden Rohrleitungen

$$\dot{V} = A \times c$$

$$\dot{V} = d_i^2 \times 0.785 \times c$$

$$\dot{V} = \frac{\dot{m}}{\rho}$$

$$\dot{V} = \frac{\dot{Q}_0}{h_1 - h_4 \times \rho}$$

$$\dot{V} = \frac{\dot{Q}_0}{q_0 \times \rho}$$

$$q_0 = h_1 - h_4$$

$$c = \frac{\dot{Q}_0}{d_i^2 \times 0.785 \times q_0 \times \rho}$$

$$\dot{Q}_0 = d_i^2 \times 0.785 \times c \times q_0 \times \rho$$

$$d_i = \sqrt{\frac{\dot{Q}_0}{c \times 0.785 \times q_0 \times \rho}}$$

 $q_0 = \text{spez. K\"{u}hlmenge kJ/kg}$

 $\dot{V} = \text{Volumenstrom m}^3/\text{s}$

 $A = Fläche m^2$

 \dot{Q}_0 = Kühlleistung kJ/s (KW)

 d_i = Rohrinnendurchmesser m

 ρ (Rho) = Dichte kg/m³

c = Geschwindigkeit m/s

(Ende der Wärmeaufnahme) (Beginn der Verdichtung)

 h_1 = Wärmeinhalt kJ/kg h_4 = Wärmeinhalt kJ/kg

(Beginn der Verdampfung)

Bezeichnung	Sole Glykolmischung m/s	Wasser m/s	Kältemittel m/s
Saugleitung	0,5 - 1,5	0,5 - 2	6 - 12
Druckleitung	1,0-2,0	1,5 - 3	6 - 15
Flüssigkeitsleitung			0,3 -1,2

Druckverlust der Rohrleitung

$$\Delta p = \lambda \times \frac{l}{d_i} \times \frac{\rho}{2} \times c^2$$

Druckverlust durch Einzelwiderstände

$$\Delta p = \zeta \times \frac{\rho}{2} \times c^2$$

Druckverlust durch steigende Leitung

$$\Delta p = \rho \times g \times h$$

Gesamtdruckverlust

$$\Delta p_{ges} = \lambda \times \frac{l}{d_i} \times \frac{\rho}{2} \times c^2 + \zeta \times \frac{\rho}{2} \times c^2 + \rho \times g \times h$$

 $\lambda = \text{Praxiswert} \quad \text{Cu } 0.03$

l = Rohrleitungslänge m

 ζ = Zeta Wert aus Tabellen

 $\Delta p = Druckverlust Pa$

 $g = Fallbeschleunigung 9,81 \text{ m/s}^2$

$$1 \text{ kJ/s} = 1 \text{ kW}$$

$$kg m/s^2 = N$$

 $100\ 000\ Pa = 1\ bar = 0.1\ MPa$

Arbeiten mit Tabellen

1. Wahl des Leitungsdurchmesser

2.Berechnung der Strömungsgeschwindigkeit und Vergleich, ob wir in der zulässigen Grenze legen.

3. geometrische Länge der Saugleitung errechnen l_{aeo}

4. Korrekturfaktor der Verflüssigungstemperatur heraus suchen

$$t_c = 45^{\circ}\text{C} \rightarrow 0.95$$

5.Interpolieren der Kälteleistung

t_0	=	+5 ° <i>C</i>	$ t_0 = -\epsilon$	$6 ^{\circ}C \mid t_0$	=	−10 °C				. (7
$\dot{Q}_{0,7}$	$\cdot = 3$	38,18 <i>KW</i>	$\dot{Q}_0 = 26,38$	$8 KW \dot{Q}$	$_{0,T} =$	22,10 <i>KW</i>					
$\Delta t =$	15 k	$\Delta Q =$	16,05 kW	Q	0,-6°C	$r = \frac{\Delta Q}{\Delta t} \times 4 +$	$\dot{Q}_{0,T} = \frac{1}{2}$	$\frac{6,05}{15} \times 4$	+ 22,1 = 20	6,38 <i>kV</i>	V

6.effektive Tabellenwert

$$\dot{Q}_{0,T,eff} = \dot{Q}_{0,T} \times f = 26,38 \text{ x } 0,95 = 25 \text{ KW}$$

7. äquivalente Länge der Einbauteile

Die Einzelwiderstände wird in eine Rohrlänge (äquivalente Länge) umgewandelt.

Stück		Länge (m)
1	Muffe 54/35	1,50
1	Bogen 35 90°	0,60
1	Doppelbogen 35 180°	0,80
2	Bogen 35 90°	1,20
1	Doppelbogen 35 180°	0,80
1	Bogen 35 90°	0,60
1	Ventil	0,45
		5,95

8.gesamte Rohrleitungslänge

$$\leftarrow l_{ges} = l_{geo} + l_{aqu} = 26 \text{ m} + 5,95 \text{ m} = 31,95 \text{ m}$$

9.Berechnung der tatsächlichen Temperaturdifferenz

$$\Delta T_e = \Delta T_T \times \frac{l_{ges}}{l_{\ddot{a},T}} \left(\frac{\dot{Q}_0}{\dot{Q}_{0,T,eff}} \right)^{1,8} = 1.1 \text{ x} \frac{31.95m}{30.5m} \times \left(\frac{22 \text{ kW}}{25 \text{ kW}} \right)^{1,8} = 0.91 \text{ K}$$

D to did	77 ' 1	D 1 1 C 11 ' IZ (E C 1 1)		
Bezeichnung	Kurzzeichen	Druckabfall in K (Empfehlung)		
Saugleitung	SL	1 bis 2		
Druckleitung	DL	1 bis 2		
Flüssigkeitsleitung	FL	ca. 0,5		
Verflüssigerleitung	VL	ca. 0,5		

 l_{qes} = gesamte Rohrleitungslänge(Rohr +Formteile) errechnet

 $l_{\ddot{a},T}$ = Wert mit dem die Tabelle errechnet wurde (aus Kopfzeile)

 \dot{Q}_0 = Verdampferleistung (Kälteleistung)

 $\dot{Q}_{0,T,eff}$ =Berechnete Leistung der Tabelle (Leistung aus der Spalte)